Fernando Arias #IPAC10019321

Fernando Arias

Fernando Arias #IPAC10019321

Signal Processing, Image Processing, Hyperspectral Imaging, Compressive Sensing

Sede:
Panamá
Unidad / Facultad:
FAC. DE ING. ELÉCTRICA
Grado Académico:
Doctor (a)
Área de Investigación
Robótica, Automatización e Inteligencia Artificial
Áreas de Interes
Sensado Remoto, Inteligencia Artificial para Procesamiento de Señales Multidimensionales, Sensado Compresivo, Desarrollo Sostenible
SNI:
Investigador Nacional 1 2023 - 2025
Email:
fernando.arias@utp.ac.pa

Publicaciones en Google Scholar

Publicación Citas Año
Supervised sparse-representation classification on hyperspectral images using the city-block distance to improve performance 6 2017
Improving execution time for supervised sparse representation classification of hyperspectral images using the Moore–Penrose pseudoinverse 3 2019
Compressive sensing in reflectance confocal microscopy of skin images: a preliminary comparative study 3 2016
Comparative Analysis of Sparse Signal Reconstruction Algorithms for Compressed Sensing 2 2014
RCMDD: A denoising architecture for improved recovery of reflectance confocal microscopy images of skin from compressive samples 1 2020
Single-Shot Multispectral Image Acquisition for Low-Altitude Remote Sensing using Light Diffraction Techniques 1 2019
Classification performance of a block-compressive sensing algorithm for hyperspectral data processing 1 2016
Hyperspectral imaging for rice cultivation: Applications, methods and challenges 0 2021
A Framework For An Artificial Neural Network Enabled Single Pixel Hyperspectral Imager 0 2019
Análisis y Estimación de Precipitación para Modelado de Caudal del Río Juan Díaz en el Distrito de Panamá Utilizando Redes Neuronales 0 2018
A Comparative Study on the Parametrization of a Block-based Compressive Sensing Algorithm for Hyperspectral Imaging Applications 0 2016
Computational Framework for Cyclic Code Formulation Using Polynomial Algebra 0 2015
Classification Performance of a Hyperspectral Data Processing Algorithm Using a Block-Compressive Sensing Approach 0 2015
Supervised sparse-representation classification on hyperspectral images using the city-block distance to improve performance 6 2017
Improving execution time for supervised sparse representation classification of hyperspectral images using the Moore–Penrose pseudoinverse 3 2019

Investigadores Relacionados